Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hsiao Wei Chen and
 Edward R. T. Tiekink*

Department of Chemistry, National University of Singapore, Singapore 117543

Correspondence e-mail: chmtert@nus.edu.sg

Key indicators

Single-crystal X-ray study
$T=183 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.031$
$w R$ factor $=0.074$
Data-to-parameter ratio $=18.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Chloro[tris(perfluorophenyl)phosphine]gold(I)

The Au atom in the title compound, $\left[\mathrm{AuCl}\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}\right\}\right]$, exists within a P and Cl donor set that constitutes a linear geometry. There are two independent molecules in the asymmetric unit; the $\mathrm{Au}-\mathrm{P}$ and $\mathrm{Au}-\mathrm{Cl}$ bond lengths and the $\mathrm{P}-\mathrm{Au}-\mathrm{Cl}$ angle are $2.2060(9), 2.2688(9) \AA$ and $172.68(3)^{\circ}$, respectively, for molecule 1 and 2.2149 (9) 2.2706 (9) \AA and 176.54 (3) ${ }^{\circ}$, respectively, for molecule 2 .

Comment

Phosphinegold(I) thiolates form an important class of compounds that display anti-arthritic activity and potential as antitumour agents (Tiekink, 2002). They are conveniently prepared from their phosphinegold(I) chloride precursors and it is in this context that the title compound, $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{PAuCl}$, a known compound (Jacob et al., 1997), was prepared and characterized. Two independent molecules comprise the asymmetric unit. The parameters defining the Au coordination geometry are in essential agreement with each other, and the $\mathrm{Au}-\mathrm{P}$ distances are significantly shorter than the $\mathrm{Au}-\mathrm{Cl}$ distances. The sequence of dihedral angles formed between the aromatic rings for molecule 1 are 76.89 (18), 73.83 (19) and $78.0(2)^{\circ}$, and these values are closer than those found for molecule 2, viz. 65.73 (17), 68.74 (17) and 89.98 (18) ${ }^{\circ}$. As highlighted in Fig. 1, the two independent molecules are in close proximity so as to form weak $\mathrm{Au} . . . \mathrm{Cl}$ interactions, such that $\mathrm{Au} 1 \cdots \mathrm{Cl} 2$ is $3.5428(9) \AA$ and $\mathrm{Au} 2 \cdots \mathrm{Cl} 1$ is shorter, at 3.4111 (9) \AA. The $\mathrm{Au} 1 \cdots \mathrm{Au} 2$ separation is 3.7828 (3) \AA. While there are many close F...F contacts in the crystal structure, the shortest contact involves atoms F15 and C3 ${ }^{\mathrm{i}}$ [symmetry code: (i) $-\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$]. A closer examination of this interaction reveals that, in fact, atom F15 is directed towards the ring centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring, so that this distance is 3.171 (3) \AA, with an angle of 161.1 (3) ${ }^{\circ}$ subtended at F15. A recent review emphasizes the importance of such interactions in the crystal structures of fluorinated molecules (Prasanna \& Guru Row, 2000).

(I)

Experimental

The title compound was prepared from the reaction between $\mathrm{Na}\left[\mathrm{AuCl}_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Aldrich) and $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}$ (Lancaster Synthesis) using

Received 18 December 2002 Accepted 20 December 2002 Online 10 January 2003
established procedures (Al-Saády et al., 1985). Colourless crystals were obtained in 72% yield from the layering of ethanol over a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the compound; m.p. 469.6 K (decomposition). Found: $\mathrm{C} 28.28 \% ; \mathrm{C}_{18} \mathrm{AuClF}_{15} \mathrm{P}$ requires: $\mathrm{C} 28.36 \%$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 147.6(d, J=256 \mathrm{~Hz}), 145.2(d, J=258 \mathrm{~Hz}), 138.2$ p.p.m. $(d, J=269 \mathrm{~Hz})[\mathrm{P}-\mathrm{C}$ was not observed in accord with the literature (Jacob et al., 1997)]. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-77.45(t, 6 \mathrm{~F}, J=$ $19 \mathrm{~Hz}),-90.57(d, 3 \mathrm{~F}, J=23 \mathrm{~Hz}),-105.91$ p.p.m. $(t, 6 \mathrm{~F}, J=19 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-33.2$ p.p.m.

Crystal data

$\left[\mathrm{AuCl}\left(\mathrm{C}_{18} \mathrm{~F}_{15} \mathrm{P}\right)\right]$
$M_{r}=764.57$
Monoclinic, $P 2_{1} / n$
$a=15.434(7) \AA$
$b=11.8116(5) \AA$
$c=22.4469(10) \AA$
$\beta=95.632(1)^{\circ}$
$V=4072.4(3) \AA^{3}$
$Z=8$
$D_{x}=2.494 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=764.57$
Monoclinic, $P 2_{1} / n$
$a=15.4344$ (7) A
$b=11.8116(5) \AA$
$c=22.4469$ (10) A
$\beta=95.632(1)^{\circ}$
$Z=8$
Mo K α radiation
Cell parameters from 8793 reflections
$\theta=2.3-29.9^{\circ}$
$\mu=7.58 \mathrm{~mm}^{-1}$
$T=183$ (2) K
Block, colourless
$0.42 \times 0.36 \times 0.24 \mathrm{~mm}$

Data collection

Bruker AXS SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.053, T_{\text {max }}=0.162$
33627 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.074$
$S=1.01$
11871 reflections
649 parameters

11871 independent reflections 8712 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-20 \rightarrow 21$
$k=-13 \rightarrow 16$
$l=-31 \rightarrow 31$

H atoms not located
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0327 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.04 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.88 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

Au1-P1	2.2060 (9)	P1-C7	1.824 (3)
Au1-Cl1	2.2688 (9)	P1-C13	1.814 (4)
Au2-P2	2.2149 (9)	P2-C19	1.820 (3)
$\mathrm{Au} 2-\mathrm{Cl} 2$	2.2706 (9)	P2-C25	1.820 (3)
P1-C1	1.813 (3)	P2-C31	1.805 (4)
P1-Au1-Cl1	172.68 (3)	C1-P1-C13	102.88 (16)
$\mathrm{P} 2-\mathrm{Au} 2-\mathrm{Cl} 2$	176.54 (3)	Au2-P2-C19	107.23 (11)
$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 1$	115.02 (11)	Au2-P2-C25	115.35 (11)
Au1-P1-C7	109.85 (11)	Au2-P2-C31	115.83 (12)
Au1-P1-C13	113.45 (12)	C19-P2-C25	107.31 (16)
C1-P1-C7	106.31 (15)	C19-P2-C31	109.03 (16)
C7-P1-C13	108.83 (16)	C25-P2-C31	101.68 (16)

The residual electron-density peak of $1.04 \mathrm{e} \AA^{-3}$ was located in the vicinity of the Au atom.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL.

Figure 1
The molecular structure and crystallographic numbering scheme for the two independent molecules of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{PAuCl}$, highlighting the intermolecular $\mathrm{Au} \cdots \mathrm{Cl}$ contacts. Atom C 20 is obscured. F atoms are labelled according to the atom to which they are bonded. Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).

The National University of Singapore is thanked for the award of a research grant ($\mathrm{R}-143-000-139-112$).

References

Al-Saády, A. K., McAuliffe, C. A., Parish, R. V. \& Sandbank, J. A. (1985). Inorg. Synth. 23, 191-194.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bruker (2000). SMART, SAINT and SHELXTL (Versions 5.6) and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Jacob, K., Voigt, F., Merzweiler, K. \& Pietzsch, C. (1997). J. Organomet. Chem. 545-546, 421-433.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Prasanna, M. D. \& Guru Row, T. N. (2000). Cryst. Eng. 3, 135-154.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tiekink, E. R. T. (2002). Crit. Rev. Oncol./Hematol. 42, 225-248.

